初中数学课堂教学效率提高策略——浅谈“四善五环”课堂教学模式

发布日期:2024-10-11 08:34 来源:广安日报 访问量:
【字体: 打印

★摘要:我们认为,课堂是实施和指导教学的主阵地,在课堂教学中,教师和学生的角色同等重要,缺少任何一方,教学活动都无法有效开展。因此,教师在课堂上采用的教学模式应两者兼顾。课堂上充分采用“四善五环”教学模式,能够大大提高课堂教学效率,提升全体学生的实际参与互动程度。

★关键词:初中数学;教学效率;“四善五环”教学模式。

一、什么是“四善五环”课堂教学模式

“四善”,即在教学课堂上,教师要真正做到善于积极调动和不断培养全体学生自主学习的积极性,善于努力培养和不断提高全体学生的自主学习综合能力,善于挖掘学生创新实践力,善于培养学生批判质疑力。“五环”,即课堂教学过程由定位独学、交互共学、提升验学、检测评学、延展活学5个环节组成。我所在的学校是一所农村初级中学,从2020年9月开始实施“四善五环”课堂教学模式,现在取得了令人满意的效果。

二、为什么要实施“四善五环”课堂教学模式

初中数学课堂的传统模式,老师往往更加关注学生掌握和获取自己课堂上所要讲解的知识点的多少,无形中直接导致教师讲得口若悬河,学生听得昏昏欲睡,课堂达不到良好的教学效果,反而消减了学生对数学课程的学习兴趣、积极性和主动性,进而抑制了学生数学课程的学习能力、思考能力。“四善五环”课堂教学模式不仅让教师课堂操作方便,还激发了全体学生的参与感,从而让课堂实用、高效。

三、如何实施“四善五环”课堂教学模式

(一)定位独学环节。教师应当提前为学生定位好需要独立学习的内容,明白要解决的问题,清楚获取什么样的数学概念、定理等知识点。这样,学生会明确独立学习的目标和方向,不会盲目和流于形式。此环节,教师语言要简洁、准确、科学、生动,并带有鼓励性,把数学课堂变得生动、有趣。这就要求教师要根据学情,充分备课,精准定位学生独立学习内容,时间约5分钟。本环节不仅关注学生对知识的获取,更注重培养学生的自主学习能力,这种能力的培养将对其未来的学习和生活产生深远影响。

(二)交互共学环节。就探究内容,学生间互相交流,共同探究学习。此环节,教师并非什么也不做、什么也不讲,必要的提问和讲解不能少,教师的提问应当有严密的逻辑性。学生探究时,老师提出的问题不仅要由浅入深,循序渐进,还要在每提出一个问题后都要给予学生充足的时间去研究、思考、讨论;教师在教室巡视时,要关注全面,整体了解学生探究情况,恰到好处地点拨,画龙点睛地讲授。本环节是课堂教学的核心,一般情况用时15分钟左右。鼓励学生积极发言、分享,即使学生思维有错误,也不要批评,应讲究方式方法。大胆地把我们的课堂还给学生,相信我们的学生有很强的学习能力、合作能力;调动学习的主动性,让学生体验学习的快乐。最后把学生的探究结果巧妙归纳、总结出来,使学生系统掌握知识。在本环节,还可以创新性地引入小组竞争机制,激发学生的团队荣誉感和求胜心,从而促使学生更加积极地投入到合作探究中。同时,鼓励学生跨组交流,打破小组的局限性,拓宽思维的广度。

(三)提升验学教育环节。将本节课所学内容活学活用,既帮助学生巩固了知识,又让他们验证所学的知识,提升了学生对数学中的概念和定理等基础知识的理解,学会灵活运用。教师设计的范例题型,将易错、易混、易漏点等问题考虑其中,并且在点拨讲授时着重强调。如:在数√2,0,5.12,π,7/13,0.1010010001……中,是无理数的有: 。学生会错解为:√2,π,7/13。这是对无理数、有理数概念理解不清,导致出错。只是简单计算7/13,误以为是无限不循环小数,误认为0.1010010001……是无限循环小数。教师明确给出正解:√2,π,0.1010010001……并且进行对正解的分析,有限小数或无限(无穷)循环小数是有理数,无限(无穷)不循环小数是无理数。本环节不再局限于传统的书面练习,而是融入了实践操作和数学模型构建等活动。通过实际动手,让学生更直观地感受数学原理,深化对知识的理解。

(四)检测评学环节。主要检查学生在本节课中所掌握的知识点,进一步加强对知识的应用,以便教师客观评判,并针对出现的问题采取弥补措施。本环节即课堂小练习,在整节课中作用不能忽视,体现知识向能力的转化。教师设计检测题目要紧紧围绕本堂课所学内容,遵循针对性强、题量少(4—5道即可)、计算量适中、由易到难的原则。本环节还可以利用现代信息技术,实现实时数据分析,精准定位每个学生的知识薄弱点,并为其推送个性化的巩固练习,实现真正的因材施教。

(五)延展活学环节。要求设计一道既有利于培养知识点和能力的开拓性综合题,或者是变式题,也可以设计一道既与本节课知识点密切相关,又可以引发下节课所学内容的悬念问题,满足“吃不饱”的学生,拓展特优生思维,培养他们创新实践、举一反三的能力。如:用待定系数法求反比例函数解析式时,出示题目:已知函数y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=0时,y=0;当x=4时,y=9,求当x=-1时,y值是多少?对正比例关系、反比例关系掌握得好的这部分学生会跃跃欲试,忍不住要挑战,解答后会心情愉悦,体验到别人不会自己会的快乐,使他们越来越想学数学,越来越爱学数学。本环节还可以鼓励学生自主命题,不仅考察对知识的掌握程度,更激发学生的创新思维和对知识的综合运用能力。此外,也可以通过线上平台,开展跨班级、跨学校的数学交流活动,让学生在更广阔的平台上展示和交流自己的学习成果,拓宽视野。

总之,课堂教学活动是一个能使学生掌握和熟练获取数学基础知识、培养逻辑思维能力的一种方式,“四善五环”的创新课堂教学模式,以数学教师和广大学生的共同需求关系作为课堂教学活动主体,围绕“学”这个关键字进行5个环节梳理,展开课堂教学,提高了课堂教学效率,学生的学习也必然会事半功倍。(四川省武胜县赛马初级中学校 王小莉)

相关附件:

    扫一扫在手机打开当前页
    添加收藏 我要纠错 关闭窗口

    相关信息